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Beyond the first recurrence in scar phenomena
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The scarring effect of short unstable periodic orbits up to times of the order of the first recurrence is well
understood. Much less is known, however, about what happens past this short-time limit. By considering the
evolution of a dynamically averaged wave packet, we show that the dynamics for longer times is controlled by
only a few related short periodic orbits and their interplay.

PACS number~s!: 05.45.Mt, 03.65.Ge, 03.65.Sq
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The study of the quantum manifestations of classi
chaos is at present a topic of very active research interes@1#.
Great advance came from random matrix theory~RMT!,
which provides an understanding of universal statisti
properties of quantum spectra@2#. The most striking depar
ture from RMT described so far in the literature is the ph
nomenon known as ‘‘scar’’@3#. This term describes an
anomalous localization of quantum probability density alo
unstable periodic orbits~PO! in classically chaotic systems
Heller showed@4# the importance of the first recurrences
POs in the scarring effect. In a subsequent work Tomso
and Heller@5# demonstrated that the semiclassical propa
tion can be carried out with remarkable precision long a
classical fine structure had developed on a scale m
smaller than\, by computing the corresponding correlatio
function,Cscl(t), as a sum of contributions of the homoclin
excursions of the PO. This procedure is however cumb
some, since in general many orbits are needed to obtain
verged results, and this number increases rapidly with t
~see Ref.@5# for details!. This picture is greatly simplified if
alternatively considering the corresponding averaged dyn
ics for finite periods of time. In this case, as will be shown
this Rapid Communication, a structure of a few short P
emerges that govern the quantum dynamics for times pas
first recurrence of the original PO.

Understanding scarring can be tackled from two sid
One way is trying to disentangle the complexity involved
the distribution of individual levels in the spectra of clas
cally chaotic systems@6–8#. For example, in Ref.@8# struc-
tures localized on short POs of the stadium were obtained
considering state correlation diagrams and iteratively rem
ing the parametric interactions~avoided crossings! between
the involved eigenstates. The other way consists of
proaching the problem in a much more straightforward fa
ion, by studying how the dynamics of POs induce scars
the eigenfunctions of the system.

Heller’s work provided a time-dependent view that sho
how recurrences in the short time dynamics of a wave pa
along the neighborhood of an isolated PO produces the
cumulation of quantum probability density characteristic
scars. Very recently Kaplan and Heller@9# have shown how
the use of coherent wave packet sums, decaying as the
time, leads to enhanced scarring. Later, it was described
PRE 621063-651X/2000/62~6!/7583~4!/$15.00
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some of us@10# how ~nonstationary! wave functions highly
localized over POs can be constructed from finite time F
rier transform of wave packets. This method allows the c
culation of the contribution of each eigenstate to scars.

The time-dependent approach presents the additional
vantage of being easily connected with spectroscopy exp
ments through Fourier transform into the energy domain
the autocorrelation function generated by a test initial wa
packet@11#. In the short times limit, recurrences originate
by isolated unstable POs in the vicinity of the packet tra
late into low resolution features of the corresponding spe
~or local density of states! consisting of peaks or band
whose widths are determined by their Lyapunov expone
In the other limit, corresponding to long times, nonline
effects introduce modulations in these envelopes leading
sentially to Porter-Thomas distributions of spectral inten
ties, although it has been shown recently@12# that the scar-
ring effect is still noticeable in the tail of the distribution
Finally, when the Heisenberg time is reached, individu
eigenstates are resolved, and we have essentially the infi
resolution version of the spectrum. In this sense, the ove
aspect of chaotic spectra is highly conditioned by the le
unstable PO~LUPO! contained in the phase space regi
spanned by the test wave packet.

In this Rapid Communication we consider the case
intermediate times, which allow the participation of orb
longer than the LUPO. The associated low resolution spe
split into several components showing evidence of the p
ticipation of only a few localized structures corresponding
short POs, which also present their signatures in the corr
tion function. It is the magnitude of the interaction~in the
sense of Ref.@8#! among these localized wave functions a
that associated to the LUPO that determines which or
come into play.

In our study we used the desymmetrized stadium billia
of radius r 51 and enclosed area of 11p/4. This system
constitutes a paradigm in the study of hard chaos. From
classical point of view it has been demonstrated to be
godic.

To study the scarring effect of the different stadium P
we closely follow the method described in Ref.@10#, which
consists in following for finite times the dynamics of a wa
packet initially located in the vicinity of a particular PO. I
R7583 ©2000 The American Physical Society
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our case we use a harmonic oscillator coherent s
~throughout the paper\ is set equal to 1!,

^x,yuf&5F2a

p G1/4

e2a(x2x0)22a(y2y0)2
ei (Px

0x1Py
0y), ~1!

with a530.68. The time evolution of this state can be fo
lowed by projection onto the stadium eigenstates,un&:

uf~ t !&5e2 iĤ tuf~0!&5(
n

un&^nuf~0!&e2 iEnt, ~2!

which are calculated by the scaling method@13#. Recur-
rences in the corresponding correlation function,C(t)
5^f(0)uf(t)&, determine the structure in the associated
nite resolution spectrum,

I T~E!5
1

2pE2`

`

dt C~ t !WT~ t !eiEt, ~3!

where a window function,WT(t), has been introduced t
eliminate features inC(t) taking place after a given time
Choosing a Gaussian form,e2t2/2T2

, for this window the
following expression forI T(E) is obtained:

I T~E!5
T

~2p!1/2 (
n

u^nuf~0!&u2e2T2(E2En)2/2. ~4!

As shown in Ref.@10#, it is also possible to compute th
wave functions associated to each low resolution band~or
envelope!, by means of the expression

uCE0&5
1

2pE2`

`

dtuf~ t !&WT~ t !eiE0t

5
T

~2p!1/2 (
n

un&^nuf~0!&e2T2(E02En)2/2. ~5!

These band wave functions have been shown to be hi
localized along the scarring PO, when the time of the fi
recurrence is used as the smoothing time@10#.

We will concentrate our study in one of the most rep
sentative short PO of the desymmetrized stadium; nam
that running along the diagonal joining the two extrem
points on both axis, which corresponds to a diamond sh
in the full version of the stadium. This PO is presented in
inset to Fig. 1 along with some others which are relevan
our study.

Using a wave packet@Eq. ~1!# initially located on the
middle of the diagonal PO@(x0 ,y0 ,Px

0 ,Py
0)5(1,1/2,96/A5,

248/A5)#, the autocorrelation function and the correspon
ing infinite (T5`) and low resolution (T50.04) spectra
have been computed. The results are presented in Figs. 1
2, respectively. Notice that the time used in the smoot
version of the spectrum is roughly equal to the period
appearance of the first recurrence inC(t), to which only the
diagonal PO contributes. It can be observed that the pe
corresponding toI ` appear grouped in clumps, so thatI T
exhibit a series of~17! very well defined bands, which ar
equally spaced. Moreover, the positions of these peaks,
te
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culated as the mean energy value of each band, are in
good agreement with the energies obtained from the w
numbers, k, quantized according to the usual Boh
Sommerfeld quantization rule:

k5
2p

L S n1
n

4D , ~6!

wheren is the number of nodes along the orbit,L52A5 its
length, andn59 the corresponding Maslov index. As a
illustration, we show in the upper part of Fig. 2 the wa
functions ~squared! associated to bands 9 to 12, calculat
using Eq.~5!. The values ofA^E& are also given below eac
plot, so that the agreement with the value predicted by qu
tization condition~6! can be checked. As expected, the wa
functions appear highly localized along the diagonal PO, c
responding to a number of nodes of 31 to 34, respectiv

FIG. 1. Absolute square of the autocorrelation function cor
sponding to a wave packet initially centered on the diagonal p
odic orbit ~a! of a desymmetrized stadium billiard withr 51 and
area 11p/4. This and other orbits relevant to our study are sho
in the inset. Arrows indicate the recurrence times of these perio
orbits.

FIG. 2. Infinite resolution spectrum~sticks! and smoothed ver-
sion of it for T50.04 ~solid line! corresponding to the autocorrela
tion function of Fig. 1. In the upper part, the wave functions as
ciated to bands 9 to 12, calculated using Eq.~5! andT50.04, are
presented. The corresponding values ofA^E& are shown below each
plot.
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This result could have also been obtained with the m
elaborated coherent wave packets sums of Kaplan and H
@9#.

Let us consider now recurrences taking place at lon
times in the correlation function of Fig. 1. One can fors
that their analysis will be more complicated; for one thin
they appear at longer times so that the packet has had
opportunity to explore more extended regions of phase sp
~where the linearized dynamics around the PO is no lon
valid!, and also several orbits contribute to them. The mec
nism responsible for the dynamical coupling of these P
accessed by the phase space sampling associated t
choice of initial wave packet~1!, is not obvious. Some pre
liminary results@14# indicate that the dynamics along th
manifolds emanating from them and their proximity, is
important factor in this issue.

For this purpose, let us examine the group of peaks
uC(t)u2 at t;0.0820.12. It presents a complicated structu
in addition to the main maximum att;0.09, it exhibits a
shoulder at smaller time values and four much shorter pe
at longer times. Taking into account the periods of the orb
presented in Fig. 1 a tentative assignment of the contribu
to each peak has been made. The result is indicated b
beled arrows over the curve ofuC(t)u2. To check our hypoth-
esis, we consider a series of low resolution spectra comp
using progressively larger smoothing times, so that POs w
increasingly longer periods are allowed to come into pl
Some representative results, corresponding to the ninth b
of the spectrum of Fig. 2, are presented in Fig. 3. Our ca
lations show that in the rangeT50.0220.07 the smoothed
band consists of only one peak, which begins to develop
incipient intraband structure asT increases~see different
curves in Fig. 3!. After that time the structure gets mor

FIG. 3. Enlargement of the region of the spectrum of Fig
corresponding to the ninth band. The smoothed version has
computed for three different values of the resolution time,T: 0.02
~solid line!, 0.04~dashed line!, 0.07~dotted-dashed line!, and 0.135
~dotted line!. In the upper part, the wave functions associated to
labeled bands are presented. The corresponding values ofA^E& are
shown below each plot.
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clearly defined, so that for the intervalT50.1220.20 four
intraband components are readily observable~dotted line in
Fig. 3!. The associated wave functions are shown in the
per part of the figure.

As can be seen, the wave function labeled by 2, co
sponding toT50.07, is very similar to that already present
in Fig. 2 that was computed atT50.04. However, function
1, calculated at a smaller time, presents a much stron
localization along the diagonal PO, being better defined s
cially at the corners. This is due to the fact that a sma
resolution time allows the participation of more eigensta
in the expansion of the wave function associated to e
band. Finally, at the largest time considered,T50.135, the
band splits into four components, whose associated w
functions are shown in plots 3 to 6 of Fig. 3. By visu
inspection, these functions are found to be scarred by P
~d!, ~c!, ~b!/~a!, and ~d!, respectively. This assignment wa
confirmed more quantitatively in the following way. In th
first place, we constructed localized wave functions on
scarring orbits in the same way described above for the
agonal PO~see Fig. 2!, and calculated the overlaps of th
resulting functions with those of the intrabands consider
The wave function associated to peak number 5 is a lin
combination~56% and 42%! of the structures localized on
orbits ~b! and ~a!, being the corresponding overlap valu
0.75 and 0.65, respectively. Values greater than 0.7 w
obtained for the other three peaks. In the second place,
corresponding calculated values ofA^E&: 45.959, 46.352,
46.809, and 47.267, agree remarkably well with the p
dicted values of k that are obtained from the Bohr
Sommerfeld quantization rule@Eq. ~6! with the appropriate
values for the parametersL andn]: 45.966, 46.367, 46.748
46.715, and 47.225. The reason why the ninth band in
spectrum of Fig. 2 splits into these components can be
derstood by considering the Hamiltonian matrix eleme
among localized states 1 and 3–6 of Fig. 3. These numb
defined as interactions in Ref.@8#, when calculated~226,
664, 1706, and 533, respectively! turn out to be larger than
any other interaction with localized structures in this ene
region. The picture that emerges is analogous to that of n
overlapping resonances embedded in a continuum~see dis-
cussion in Ref.@15#!. The band or intraband structures o
tained with Eq.~5! correspond, loosely speaking, to stat
dynamically averaged over classical paths. They are initia
located in the neighborhood of unstable POs~equivalent to a
decaying resonance!, which are the only renmant of order i
the middle of the surrounding chaotic sea~playing the role of
the continuum!. Moreover, the corresponding spectra pres
a great resemblance with resonance spectra, and the r
hand side of Eq.~5! can be viewed as an approximate pr
jection operator~on each resonance! acting onuf(0)&.

en

e

FIG. 4. Wave functions corresponding to different compone
of bands 12 and 13 in the spectra of Fig. 2, showing localizat
along periodic orbits~e! and~f! of Fig. 1. The corresponding value
of A^E& are shown below each plot.
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The same analysis can be applied to investigate the in
band structure of other bands in the spectrum of Fig. 2
order to discover the signature of other POs. This is the c
for example, of the wave functions presented in Fig. 4, wh
are scarred by POs~e! and~f!, respectively. They correspon
to peaks in the intraband structure of bands 12 and 13 of
2. Again the computed values ofA^E&: 50.282 and 52.757
agree very well with the predicted values ofk: 50.245 and
52.722.

This result indicates that the intraband structure ass
ated to different bands can be quite distinct. As shown, thi
due to the fact that all POs involved in a given intraba
pattern~corresponding to a given smoothing time! quantize
in different ways, so that each one gives rise to a charac
istic spacing. It is the relation among the values of the
spacings and that of the original orbit~the LUPO in our
case!, which determines the distribution of new peaks
each band. Since they are in principle unconnected, the
tern under each band will be different.
et

tt
a-
n
e,
h

g.

i-
is

r-
e

at-

In conclusion, we have presented a study of the scar
effect of POs beyond the short time dynamics in a very c
otic system. A few POs, other than the LUPO, have be
shown to be able to develop their influence in the low re
lution features of the corresponding spectra or local den
of states, appearing at the associated quantized energy
ues; in other words, they are responsible for the avera
dynamics in this time range. It has also been described h
localized wave functions can be constructed for this interm
diate time domain. These results provide a good smoot
picture around a given PO and the family of orbits connec
to it, and then constitute an important first step in order
fully disentangle the complexity involved in the eigenvalu
spectrum of very chaotic systems.
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